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On the Unsteady Motion of a Viscous Fluid Past a Semi-Infinite Flat Plate

G. F. Carrier and R. C. Di Prima

1. Introduction

The subject of how a boundary layer responds to fluctuations in the

external flow about a steady mean has been discussed recently by several

authors [ 6, 7, 8, 9, 10]. One reason for an interest in such problems arises

in a study of the "Rijke tube" phenomenon [ 6, 7, 11]. There it appears to be

important to know the phase lag in the heat transfer from a heated gauze

situated in a stream with an unsteady velocity, Lighthill [ 7] investigated

the oscillating flow problem using boundary layer theory and the Karman-

Pohlhausen method. It is apparent that his results can not be valid near the

leading edge of the object (say a heated ribbon). However most of the heat

release takes place at the leading edge; hence it appears desirable to study

the behaviour of the velocity fluctuations near the leading edge.

In this paper the viscous incompressible flow past a semi-infinite

flat plate is investigated when the flow at infinity is U0 + U1 exp (iwt). The

analysis is based on a system of equations derived by a modified Oseen

linearization of the equations of motion [ 1, 2]. It is found that when

(U-) V 
)> U0 and U1 the flow field consists of the sum of a mean flow

(due to Uo) and an oscillatory motion (due to U, exp (iwt)). The phase advance

in the oscillatory motion is vi/8 at the leading edge and increases monotonically

to 7T/4 in a distance approximately given by (w/2 -) x = 2.5. The result for

(w/2Y) x >, 2.5 is a shear wave type solution and corresponds to an infinite

lamina performing harmonic oscillations in a viscous fluid.

In Sec. 5 the problem is considered when the interaction of the mean

motion and the oscillatory motion can not be neglected. Expressions for the

amplitude and phase advance of the unsteady skin friction near the leading

edge are found. In particular the phase advance at the leading edge increases
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monotonically from 0 to u/8 as the dimensionless parameter (wV) '/(c Uo)

increases from 0 to co. Here c is a constant which is defined in Sec. 2.

Far down the plate the solution approaches the shear wave solution.,

2. Formulation of Problem

The equations governing a two-dimensional viscous, incompressible

flow are

U-t- V =0ux  y

f (Ut 4 UUx + VUy) - Px + /4A u,  (2.1)

f(vt + uvx -- VVy) - py +/.(AV.o

Here x and y are the usual Cartesian coordinates, u and v are the corresponding

velocities, p is the pressure, f the density (which is taken constant), Y =/1 f

is the kinematic viscosity, A is the Laplacian operator, and x, y, or t used

as a subscript denotes partial differentiation with respect to that variable.

We wish to determine the velocity field associated with a semi-infinite flat

plate situated in an unsteady stream. For convenience we shall assume that

the semi-infinite flat plate occupies the half line y = 0, x >, 0. In particular

we wish to consider this problem when the imposed velocity, U(t), far from

the plate is of the form

u(t) = uo + U, eWt, (22)

where U. and U, are constants. The boundary conditions which u and v must

satisfy are

u=0, v=0 on y=0, x 0,
(2°3)

Uff . p U o +Ut ee
iw t  V ----

far from the plate.



3

In order to treat this problem we linearize Eqs. (2.1) by replacing

the convective terms uux+ vuy, and uux -vvy by cUu x and cUv x . Here c

is a constant which in general should depend upon the parameters involved

in the problem. The case U1 - 0, c = 1 gives the well known Oseen

approximation. The modification of the Oseen method (i.e. c 1) has been

used in treating the steady flow over a semi-infinite plate [ 1]. Also it has
problems

been applied to several other steady flow., and its rationalization discussed

in [2]. In [ 2] it was noted that for small Reynolds numbers that the value

c = .43 gave results in good agreement with experiment in all cases considered,

When the flow is unsteady, the choice of c is clearly more complicated.

However in a recent publication [ 3) this type of linearization was used to

compute the fluctuating heat release from a heated ribbon when U(t) had the

form given by Eq. (2.2), and the choice of c = .43 gave excellent results.

The form of U(t) suggests that we write u and v as
iwt --

u(x , y, 0 = Uo (x9 y)+ ul (x, y) e ,i {t

= Uo 1 y(X, y) I + U, + y(x, y) eiwt

and (2.4)

v(x, y, t) Vo (x, y) + v, (x, y) e w t

- U0  x, y) - U x1 (x, y)eiwt

In order to obtain a solution of this form it is necessary to neglect quadratic

terms in u,; iLe. we must restrict ourselves to cases in which U, is small

compared to either Uo or (w v)7. Then using the linearization discussed

above and Eqs. (2.4) we obtain the following equations for and ',

A X- aA- x = 0 , (2.5)

-a, x- 2 'A*= a,&Xx " (2.6)
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Here a = c Uo/y and 3 = iw/) o The boundary conditions that 2 and '9
must satisfy are

'Xx=o, =o y= -= 0\ Yy= - 1 on y = o, 0-x.co,- S(2.7)
0 X, 0 1 X 0 0, r-* 0,

far from the plate. The conditions ?x and Xx = 0 on y = 0,0* x -w clearly

hold for all x and we satisfy them by requiring )-' and X be constant on y = 0:

in particular 1' (x, o) = X (x, o) = 0. As we shall see, when w is very large

the terms involving a in Eq. (2.6) may be neglected and we obtain homogeneous,

independent equations for X and ?' That is to say, the velocity distribution is

simply the flow due to a velocity Uo at infinity plus that due to a velocity U1 e

at infinity. In general of course these terms cannot be neglected, and hence the

interaction of the mean flow and the time dependent flow must be considered.

The term aAKx represents the convective effect of the mean flow on the time

dependent flow, while the non-homogeneous term aA\ x represents the convecive

effect of the time dependent flow on the mean flow.

To complete the formulation of our problem we must note that while

, _", Xy, ?y, Xyyy and yryyy are continuous across the plate Xyy and

which are proportional to the velocity gradient are discontinuous. We may

express this discontinuity as

S(x, o) =- (X, o-) f
yy yy 2 f0 (x)

.Ayy(X, o+) - , o-) =- f(x)

The functions fo(x) and f, (x) are identically zero for x -- 0. Now the skin

friction, rt, is given by

y= 0 y= 0
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Upon substituting for uo and u, from Eqs. (2.4) and using the above relations

we may express r in the form

7- = t'o Z eiw t ,1

=2 Uo o + f L(x) ew)t (2.8)2 2

In what is to follow we shall be primarily concerned with the determination

of to(x) and f1 (x).

3. Case U, = 0

In this case our problem reduces to a solution of the problem of the

flow over a semi-infinite flat plate due to a flow U at infinity. Thus we must

solve Eq. (2.5) subject to the boundary conditions (2.7). Even when U1 # 0 we

still need the solution of this problem in order to obtain / (see Eq. (2.6)).

The solution of this problem has been given in [ 1] . Since the analysis of the

general problem will follow the lines of [ 1], but is much more complicated

in its detail; and also since we need the results found in [ 1] it is convenient

to use this simpler problem to illustrate the method of analysis that is to be

used. Hence we shall repeat briefly part of the computations described in [1].

Our problem can be most conveniently treated by the use of Fourier

transforms, We define

(7, )fJ e ' i( x+ y)X(xy)dx dy, f0 (f) =fe- i x fo (x) dx

(3J1)

In all that is to follow a barred quantity will denote the Fourier transform

of that quantity. Taking the Fourier transform of Eq. (2.5), and using the

boundary conditions and discontinuity relation for Xwe obtain

(y2+72) (2 + 2+iaf)7(f, ) = if0- (3.2)
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In order to avoid difficulties later it is desirable to write this equation as

the limit as k- 0 of the equation+

E2+ 72 +k2j 192 +(f.-1a) (-ik)}-( , )= (3,3)

If we let ( , yr denote the inverse transform of "( , ) over we obtain

upon solving Eq. (3.3) and using simple contour integration that

(,Y) f ei' Y-(:, ) d = e'ixX(xy) dx , (3.4a)

y. exp {-JYj (2+0k--,exp .lyj( + ,a) ( _ ik)-} I _

lyl 2i(a - k) (I- ik)
(34b)

In particular we obtain from Eq. (3.4b) that

XYM y- =o) (3,5)

A second equation for y(1 y = 0) can be obtained by using our

boundary conditions. First however the condition that y - 1 on the plate

must be written as the limit, as a-- 0, of Xy(x, o) = - exp (-ax) on x :- 0.

(The remarks made about k previously also apply to a.) Now differentiating

(3.4a) with respect to y and setting y = 0 we have

Xy (?, y = 0) = x 2'(y(x, y = 0) dx

= V(M - 1 a) (M

where

= f i Xy(x, y = 0) dx

+Here and throughout the rest of this paper the symbol k will be used to
represent a small, positive, real quantity which is to be shrunk to zero
at an appropriate moment,

*We shall be careful to write ( y) if we mean the x transform of %(x, y)
and X( , 1) if we are referring to the two-dimensional transform.
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The function v( ) is of course not known. Equating (3.6) and (3.5) we obtain

1 -- )/ 2(3.7)

i( - iai) (- ik)' {( ik) , (g+ ia)

We can now determine i( t) and f0 ( f)/2 by the Wiener-Hopf technique.

If we anticipate that 'Xy(x, y = 0) decays exponentially in (-x) on the negative

real axis, then V('E) is an analytic function of the complex variable - in some

upper half-plane (UHP) which includes the real axis. Similarly fo( ) is analytic

in some lower half-plane (LHP) including the real axis. Also 1/(' - ia) is

analytic in the LHP, Im( ) av. And finally K( ) = (:-ik) {( + ik)- + (T + ia)4f

is analytic in the strip - k Im('9) - k. Let us assume that we can split K(9)

into the product of two factors K+() and K.(") such that K+( ) is analytic in the

UHP, Im( ) > - k; and K.(T) is analytic in the LHP Im(-)< k. Then we may

rewrite Eq. (3.7) as

f-o(/2 K.(ia) K+( K(i) - K(j) - E(f) (3.8)

The left-hand of this equation is analytic in the LHP, while the right side is

analytic in an overlapping UHP, and hence they define an entire function E(7).

By using order conditions of the known functions at infinity and the fact that

E(-9) is an entire function we can show that E(T) - 0, hence

fo(t) I K(ia) K (*g)(39

2 i( -ia)

We recall once again that we are interested in evaluating fo(%)/2 in the limit

a 0, k-- 0.

In this particular problem K.() and K+(O) can be determined by

inspection of K(f) (we will not be so fortunate later on). We see that

K.(-) = ( - ik)' and K+(0) = (ia)> in the limit as a and k---o0. Substituting
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in (3.9) we may write fo(3) as

f (T)/2 a (3.10)
0° / -(i +k)4-

We have written (3.10) in the preceding manner to indicate clearly that the

singularity is in the UHPo In the limit as k---O we find by the conventional

inversion formula that
r-) / c Ux/Y x O 0

fo (x)/2 (3.11)

0 x,0

As mentioned previously the choice of c = .43 gives good agreement with the

non-linear theory and with experimental results for small Reynolds number.

However in this case the Reynolds number is infinite and the result which is

consistent with the Blasius solution is given by c = .35 [ 1] . It is clear that

the numerical choice of c can not affect the character of the result, and hence

for any value of c in this range the result will describe the basic features of

the flow. Finally knowing fo(") it is possible to invert X(, y) and obtain

UXoY)= U0  2(r+x) e -a(x - r)/2 + a(r - x)

2Ty):7 L 1-+y erfc L 2

where r 2 =2 +y'.

From the preceding results and the definition of ro, Eq. (2.8), we have

We can use Eq. (3.12) to determine the skin friction when U, 0, by expanding

o in a Taylor series about Uoo We have, if r(U o + U,) denotes the skin friction

+This result can be obtained from Eq. (21) of [ 1]., It also was given explicitly
by Lagestrom, Cole and Trilling [4].
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for a flow Uo + UI at infinity that

Uto

1r(Uo+ + *+Uo +

\ 2 U o

This result is correct up to quadrate terms in U 1 , and since this is the same as the

accuracy in Eq. (2.6) we may use this result to compute t, when w = 0. We have

-0)= 2"-U cUrx I f (x,w=O)= 3 C ' (3.13)

2 7ryx / 2 2 0 >~X! 3.3

These results will be of interest in the discussion in Sec. 5.

4. Case U. = 0

In this section we require that U, -', (w NJ) as indicated just after Eqs. (2.4).

When Uo = 0, Eq. (2.6) reduces to

' t=0 . (4.1)

We should note that this equation gives the first approximation to the time

dependent flow even when Uo - 0 if the parameter a- = (w V) Z/c Uo is large,

This can be seen by introducing appropriate dimensionless variables in Eqs. (2.5)

and (2.6) and then expanding YI in powers of r. The length scale that one should

use is (Ylw)!.

To solve (4.1) we proceed in exactly the same manner as described in

Sec. 3. The Fourier transform of Eq. (4.1) is

(4.2)

We have written fm( ) instead of f ( ) to indicate that this is the special case

Uo = 0, (i.e. the limit case r'-- ). From Eq. (4.2) we obtain

() exp IlyJ (me+ kVk exp J- oyI(X 2 + 92 )-'-'l 2 f (4.3)
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and finally

fo ( -) N+(ia) N.()

2 i(! - ia) o (4,4)

where N(T)= (g + 02 ) +(k 2 +k )k isanalytic inthe strip -k -Im(E) -k.

Before we proceed we must determine N.('9). In the previous section

we could determine K.( f) by inspection; here the situation is more difficult,

The details of the computation of N_('f) are presented in Appendix A. It is

found that

N.(t)= exp T- 2-T IF( ) dI (4.5)

where in the limit as k- 0

1 _ _ + ( _2_)+( In 0: R 2z) p2n (4.6)

The behaviour of F(T) in the complex plane is quite complicated. The points

= ig and ' = 0 are branch points of the function; however the behaviour

of the logarithmic term in (4.6) must be such that i = - i(3s not a branch

point. (Recall N.( ) must be analytic in the LHP.) Thus we choose the

branch of the logarithm by defining the logarithmic term in (4.6) to be zero

at =-i 0, in which case it becomes - 2ri at V = + ig. This can be seen by

writing F(})= 2( 2 + g2) ,n [ [+ (.2 +p32), ]/ei/2 r) where we have
lri

taken (-1) = e , As our branch cut we shall take the entire positive imaginary

axis. The determination of t and on the branch cuts is given in

Appendix B where the results are used in evaluating f1o(x). Finally from Eq. (4.5)

it is clear that N.(o) = 1, and since when k -P. 0, N(o) = [ we see that N+(o) = P.

We may now compute f1o(x). Upon substituting in Eq. (4.4) and using

the usual inversion formula we have, letting k p 0, a :o 0 that

f 1 e(x) f A exp {Fl( )d d (4.7)
22v i v
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where the path of integration must pass below the origin. This integral is

evaluated in Appendix B. We obtain

00

f~oX = l+ e-x + ~ dy +f yx ly+(''"l)]p~y) dy .(4.8)

I,'

Here x' = ox = (1 + i) (w/2y). x,

H C) =exp[tin cot L-+f d 41, t arc siny

y) = expm arc sin (1/y)£T sine ej
and 0' y . 1 implies 0 -- t -- ,f/2; also 1 - y c- implies 7/2 :: m ;. 0.

It is interesting to note, using Eq. (4.8) that f1o(x) is of the form 3

times a function of Ox. The expression for flo(x) given by Eq. (4.8) may be

used for numerical computation when (w/2V)x is neither large nor small.

Of course the second integral must be converted into an integration over a

finite range but this is not a difficult matter. Using Eq. (4.8), fio(x)/2 has

been computed for hx = 1/2 and 1, where h = (w/2V)). The results of this

computation are given at the end of this section. When x = 0 it is clear that

the second integral in (4.8) does not converge; this of course is not surprising

since we could anticipate from the result of Sec. 3 that f l o(x) should behave

like x " { near the leading edge of the plate.

To complete our investigation of this case we shall obtain expressions

for the behaviour of f1o(x) for large and small values of hx. To do this we

first note, since f1o(x) is identically zero for x - 0, that the Fourier transform

of f1 o(x) is essentially the usual Laplace transform but rotated through 900.

Hence we may make use of the Tauberian theorems relating the behaviour of

the Laplace inverse at the origin to the behaviour of the function at infinity,

and the behaviour of the Laplace inverse at infinity to the behaviour of the

function at the origin. (See [ 51 ) Thus we must study the behaviour of N.()
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for large and small 4

The expression for N,( ) given by Eq. (4.5) can be written in the
more convenient form

{)X eri/4 {-i

N.( = {s + (1 + s2 e/ exp f - ffn(coth e/2) d , (4.9)

where s = t/p and 0 = sinh" s. This result is obtained by rationalizing

to + W + - W)+}/8 .} + )} in (4.6), and then making the substitution

s = sinh e. It is not difficult to show from (4.9) that as s - 0

N-( ) --* 1 3 (4.10a)

and that as s -- O

)/ e 2 (20}ei/4 0[(j/ ) ] (4.10b)

Using these results and Eq. (4.4) we obtain that as x ocf ew ,
1 f1 (x)-~.3 e~)' ri/ (4.11 a)

and as x---.O

f 10 (x) = -+ 0 + x)2] (4.11b)

In particular for very small Ox

1 f(x) -2 ei/8

As could have been anticipated Eq. (4.11a) is the result for an infinite

lamina undergoing simple harmonic motion. (See [ 6] .) This result represents

a wave of transversal vibration, i.e. a shear wave. Exactly how far down the

plate it is necessary to go before (4.11a) is valid can be obtained by evaluating

f lo (x) from Eq. (4.8). The argument and a dimensionless modulus of flo(x) have

been computed using Eqs. (4.8) and (4.1lb). The results are tabulated in the

table at the end of this section, and are exhibited graphically in Figs. 3 and 4.

It appears from Fig. 3 that Eq. (4.11a) is an excellent representation for f1o(x)

for hx > 2.5 approximately. Also from the tabulated results it appears that

Eq. (4.11b) is valid for hx * 1/2 approximately.
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To summarize our results we have, under the assumptions

(w9)) > U o and (wV)';f. U1 , that the skin friction r is

/ f2 + /-U, f f10(x) +0 ewt (4.12)

where fo(x)/2 is given by Eq. (3.11) and f1o(x)/2 is given by Eq. (4.8). Near

the leading edge of the plate, t takes the form

v =,ku 0 ( cUo) +,A1 tJ(12-) (L~) ei(w t + 7TI 8) *(4.13)

Far down the plate, i.e. hx '2.5 approximately,

z= ,/ 0 (U ° ) x +/,sU ( (4.14)

Thus the flow consists of the sum of a mean flow plus an oscillatory motion

which is independent of the mean motion. The phase advance in the skin

friction increases monotonically from 7/8 at the leading edge to 7r/4 in a

distance of hx = 2.5 approximately.

TABLE

(w/2"' )x Arg ffo(x)} If~o(x)/2(w/2V) I1 Evaluated by

--0 22.50 0 0O
.1 25.930 3.19 As mptotic Formula (Eq. (4.llb)
.25 29.970 2.20
.50 360 1.77 I i
.50 34.650 1.80 Numerical Computation Eq. 4.

1.0 39.150 1.58 m
o 450 2t
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5. Case U. +U, e iWt

Now we are concerned with solving Eq. (2.6) without any restriction

on the parameters involved. In theory we could, of course, proceed exactly

as we have in the past two sections. However because of the non-homogeneouis

term as well as the more complicated differential operator which is applied

to ?we should expect the details of the computation to be more difficult. In

actual fact a direct application of the technique used in the previous sections

does present some rather formidable problems; hence it appears desirable

to attack this problem in a slightly different manner.

First we note that It can be expressed as the sum of an appropriate

solution of the homogeneous equation plus a solution of the non-homogeneous

equation. Hence we can write

S(x, y)= '(x, y) + 2 (x, y) J (5.1)

where ) is a solution of the homogeneous equation which also satisfies

the boundary condition a/J y = - 1 on the plate. Then the solution, +/2,

of the non-homogeneous equation (2.6), must satisfy the condition 4'd/l y 0

on the plate. The discontinuity condition in ?yy can be expressed as

f1 (x) = f, ,(x) + f12 (x) where

"7'yy(x, o+)= - (X, o-)- f (X)1yy I Iyy 2 lx
V/ I f1 (x)

?2yy(X, o+) = - yy(X, o-) 22

First we shall treat *. In determining f,, (x) we shall proceed

exactly as before. The Fourier transform of Y, is

0 + t'+kV) {2 + I' + iaj+ A2} ) = ijlf ,(t) ,(5.2)
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Solving for (el) and inverting over '?we obtain

exp i-lyl(2 +k2)1 ,, exp IHYl ( 2 + ia T+ / 32) , f# ()
lY) (ia + g2"-k2 ) 2

Then

f OOM(9 (5.4)
2 i( I - ia)

where M( ) + (2 pia~ j + (y2 +k2)_ . The splitting of M('J) can be

carried out in the same manner as was done in Sec. 4, hence

rkk

1f nz2+ iaz +2).+ (z2+k2)} dz 55

If we multiply the top and bottom of Eq. (5.4) by N+(o) N.(), note that

M+(o) = M(o)/M.(o) = AM.(o), N+(o) = (, and N(o) = 1, and use Eq. (4.4) we

may express f ( ) as

fi,('v) = M_()/N4- . i() 56i  . (5.6)
2 M(o)/N.(o) 2

Thus the transform of the skin friction contribution from the homogeneous

solution can be expressed as a function of I times the transform of the skin

friction when Uo = 0. Equation (5.6) will be examined in more detail shortly,

but now let us turn our attention to determining the non-homogeneous solution

of Eq. (2.6).

Using Eq. (2.5) it is clear that -(a/0 2) )(x is a solution of Eq. (2.6).

However an inspection of the properties of X as given in Sec. 3 shows that

for y = 0, * 2 = - (a/p 2 ) X x will lead to a velocity which becomes infinite at

the leading edge of the plate, i.e. 26, (x, o) behaves like x-" for small x - 0.

This, of course, we can not accept. But we can add solutions of the homogeneous

equation to this solution, and the result will still be a solution of the non-homogeneous
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equation. Hence we might be able to construct an appropriate non-homogeneous

solution by finding a homogeneous solution which will destroy the undesirable

singularity in X Thus we take )/ to be of the form

2 '(x, y)= - Xx(x Y) + 0 (x, Y) (5.7)

where 0 (x, y) must satisfy the homogeneous equation (A - aJ/ax - p2) AO = 0

and also remove the singularity in X xy, To describe our problem completely

let us specify exactly the conditions which we must require of ?2. The first

condition is 2(x, o) = 0. Secondly we require that a'l//ly = 0 on y = 0,

x>0, since 4)1 /4y= -1there. Finally 02 )L/Jy2 = 0ony= 0, x 40,

since f, (x) = 0 for x -c 0. And of course also )k2 j s behaviour is such that its

contribution to the velocity is finite at all points. The first three of these

requirements are clearly satisfied by Xx but not the last as mentioned earlier.

Hence 0 must satisfy the first three requirements and also fix the singularity

in Xx" The determination of 0 (x, y) and in particular iyy( , o) is given in

Appendix C.

Now the transform of f12 (x)/2 is given by

f 1 2 ) a P y = 0) + 0 Q 9y =o) , (5.8)

and noting that Xxy(, y = 0) i fo(j)/2,and substituting for y( y- 0)

from Appendix C we have

22 - e i~ Q ~e~/a)I (tia) ,- (5.9)

wherea 3 = {(a2 +412) -a}/2, Q( )= {(, 2 +ia +3) (+ k2 2(2+ ia+

and

Q'()=exp iJ nx) dxj, Im( )c0
-ri
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Combining Eqs. (5.9) and (5.7) we see that

2 AM.(o)/N.(o) 2 a eri/4  ia)k )=_____ io) a2L 2 ak "

(5.10)

We might recall in considering this equation that fo( )/2 is the skin friction when

U1 = 0, and fo(t)/2 is the skin friction when U0 = 0, (W )-k > U,.

To invert Eq. (5.10) in general is a rather difficult task; however it is

possible to obtain expressions for f, (x) for small x and for large x. First let

us consider f1 ( )/2. It is convenient to use the expression for fj ()/2 given

in Eq. (5.6). As - 0, (i.e. x - co) the bracketed quantity in Eq. (5.6) is

invariant with changes in a, and as a matter of fact approaches the value one.

Here the first approximation to f11 (x)/2 for large x is simply

f 1 (x) f o(X) (W) I- 4
2 f x2 = e- / as x co. (5.11)

On the other hand M.( )/N.( ) - 1 as - co and hence we have

f,, (x) ,,N.(o)

2 M2.(o) 2

{).(o) exx as x 0. (5.12)

The ratio N .(o)/M (o) is a function of the parameter o- = w Y/ (c U 0 ) 2 . It

is computed in Appendix D where we obtain upon letting N_(o)/M.(o) = exp I()}

that for a- > 1/2

I (5'o 2n + 1
=0 (2n + 1)2

and for a'- 1/2

Vi 1(,,/,)2n+ 1

) 2--- ' (2n+ 1)2
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where 2' = 2" elri 4 . From these expressions for I(T') we can already see

the effect of the mean flow on the oscillatory motion. For instance as Uo - C co,

(i.e. o---> 0), I(ct) 0 { i i/8 - 2- ' n (2r) I and upon substituting in

Eq. (5.12) we see that the phase advanced in f , (x)/2 is cancelled. We shall

discuss this in more detail after we have obtained appropriate representations

for f12(x). The real and imaginary parts of I(os) are given graphically in Fig. 5.

Now f(}) is given by Eq. (5.9). To determine f 2 (x) for small x we

must know the behaviour of f12 ( ) as co. In particular we must study

Q.() for 9 large. This is done in Appendix E where we obtain the result that

Q.G 1= - 2 1 +0 1 (5.13)

where
G i2 1-Sj log (5.14)GI = ia, 7T i+l1+ i-2 1 -IQ log I-

and S = a,/a 2 , a2 = t(a2 + 4 2) + a}/2. Upon substituting for Q.(J) and fo ( '+- )

in Eq. (5.9) we obtain that for large

f1 ( ) = 11 efli/ 2 G1(' ) 55ak3 a, (e 7) G +0 (1-111 (5.15)

where G' is the bracketed quantity in Eq. (5.14). Finally using the definitions

of al, a2 , 2 / and V Eq. (5.15) can be written as

__ _' (e) +0( ' )X (5.16)

2 2 ~~

where

H(o-) =2 + 21 - log l+ii(

and S = 1+ f(1 +41o ")" - 1}/20"2. Consequently

11 (x =~ £c'n +0(xL) as x -~0. (5.17)
2 2 V k
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We are now in a position to discuss the behaviour of f, (x)/2 for small

x. We have from Eqs. (5.12) and (5.17) that for x small

_ el 01) ea'l1T/8 Hta~( c) o(XQ )

2()e 7r' {) ;xe

= D(oe) CU +0(x A  (5.18)

where

D(0 ) = 2 + (2a-) e  e i 8

Thus near the leading edge of the flat plate the total skin friction is

/.Uoc UO +,aUD CUo iwt (.9
r~ !? =po  --' x ffyUa Dx) (,9

As Uo-- , or w - 0 the parameter a-'---* 0 and D(o )--(3/2 - 7a_2/12 .)+ i4 /ir2}

and hence when d= 0 (i.e. w = 0)

TlUo(cUo ) C1 ), (5.20)

This result is in agreement with Eq. (3.13). As a matter of fact it will be shewn,

at the end of this section, using Eq. (5o10) that the above result is valid for all

xwhen (= 0.

On the other hand when -' - co, i.e. w - co we have

D(') o (2)t {1 + (1 - i)/(2o")j e ' i/8 and hence

g (C lU- +- j 2 e ' }kei(Wt + a/ 8) (5.21)

This is in agreement with Eq. (4.12) as could have been anticipated. As d

increases from 0 to wo, arg (D(C-)) and hence the phase advance in the fluctuating

skin at the leading edge increases monotonically from 0 to V/8. This result is

presented graphically in Fig. 7. Also the modulus of D(o-) is given in Fig. 8.

It can be seen from Fig. 8 that the modulus decreases for a short range of a'
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as e increases. This decrease is extremely slight, of the order

of two or three in one hundred and fifty. However the asymptotic formula for

D(O') for small a' bears out the numerical calculations. There is apparently

no obvious physical reason why the amplitude of the skin friction should

decrease slightly as e increases from 0 to roughly 1/2.

It remains now to consider the large x behaviour of f12 (x). (We have

already shown that fll(x)/2-- (w/9)e i 4 as x 00 w, see Eq. (5.11). So

we must now consider the small behaviour of f12 ( ). This is a fairly

laborious task and is perhaps not worth a detailed analysis. It can be seen

from the definition of Q.( ) that Q.(o) is finite and hence ( - ia 1 :) Q.(c)

behaves like k for small t at worst. Also i To( )/2 behaves like (i )

so f12 ( )/2, (see Eq. 5.9), will consist of terms of the type (i ) , (i ,

and so on, at worst. Hence f11 (x)/2 will be made up of terms like x ", x

for x large. Consequently as long as a, 0, (i.e. w /: 0) these terms should

die out more quickly than those contributed by f, (x); hence

, as x co (5.22)

This result is to be expected on physical grounds since, as long as r 2 is

bounded away from zero, far enough down the plate the flow should consist of

a shear wave superimposed on the mean flow. As a-2 increases, (i.e. as w

increases or Uo decreases) the shorter the distance down the plate we must

go in order for (5.23) to be valid. In the limiting case Uo = 0 this distance

is approximately given by (w/2 " x = 2.5.

Finally we shall investigate the case w = 0. As has been pointed

out earlier (see Sec. 3) we expect in this limiting case that f, (x) = (3/2) (c Uo/x) x.

If we set w = 0 and hence A2 = 0 in M( ) (see the definition of M(k) immediately

following Eq. (5.4) we see that M( J) becomes identical with K(V) and hence upon

examining Eqs. (5.4) and (3.9) and (3.10) we obtain
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2 = 2 x "cL (5.23)

To compute f12 (x)/2 when p 2 = 0 we turn our attention to Eq. (5.9). It is

simple to show by an examination of Q(V) and R.(V) (defined in Appendix C)

that when 32 = 0 and hence a, = 0 that the bracketed quantity in Eq. (5.9)

vanishes. Hence

lir f 12 () lim d f12 f-2Cg)
12. O 2 -p 2 a7  2

This computation is straightforward and we obtain

f12( ) a (

2 2(i ) .24)

when p2 = 0. Consequently

f12 (x) 1 ((CU5.
2 - 2 V (5o25)

and adding Eqs. (5.23) and (5.24) we obtained the desired result

f(x) 3 (cUo

2 2 x

when w = 0.

To summarize briefly we have found that when (w ?) >> U0 and U1 the

mean motion and the oscillatory motion are independent. The total skin

friction is given by Eqs. (4.12) and (4.8). Asymptotic expressions valid near

the leading edge and far down the plate are given by Eqs. (4.13) and (4.14).

It is found that the phase advance in the time dependent skin friction increases

from if/8 at the leading edge to r/4 in a distance of approximately (W/2) x= 2.5.

Finally when the interaction of the mean flow and the time dependent flow can

not be neglected a result valid near the leading edge and one valid far down-

stream are obtained for the oscillating skin friction. These results are given
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in Eqs. (5.19), (5.20), (5.21) and (5.22). It is found that the phase advance

in the time dependent skin friction at the leading edge increases from 0 to 7r/8

as the parameter c Uo/(w 2 increases from 0 to wo. A graph of the phase

advance versus this parameter is given in Fig. 7. Far down the plate one

obtains the usual shear flow solution (see Eq. (5.22)).
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Computation of N.( )

In the strip - k . Im (9) - k, N(J) is analytic and non-vanishing.

Hence using Cauchy's Integral Theorem we may write

A ()= n .( 1j =_ fPn N( )dz, (A. 1)
nN~~t)=r z (-. (* - -

C

where C is the complete contour indicated in Fig. (1), (i.e. C = PI + +2 + L2 ).

If we allow the ends of this contour to approach infinity at an equal rate, the

integrals over /1 and J"2 will converge, and the contributions from the

integrations over L, and L2 will vanish giving

ZnN+(J)+ InN _ () 1 + 1 dz. (A2)
= f 7i' 2 r i ,-. dz.

/1
The first integral in the above equation is uniformly convergent for Im( *) > - k

and hence represents an analytic function of I there. A similar statement is

true for the second integral. Associating these integrals with N+(J) and N_(- )

respectively, we have

Ln N.(9) = 1 A- [(a +P z 2 -+k) dz . (A.3)
, 2,

If we confine so that Im(T) < 0 we can take r2 to be the real axis

in evaluating (A.3). Let

F(j.)= d {In N.(t)

27T1 d '

then

+(x +k W

Upon integrating by parts and writing this as the sum of two integrals from - Ow

to 0, and 0 to ow and then making the usual change of variables we obtain

F(j) 2x dx (A.4)F( ) (X2 - TO) (x2 + k3)1[ (xz + )
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In the limit as k - 0 the value of this integral is

F()1 tn P+ (a 2 + 2)
( ) 2 + py p0) _ -( 2 +0) (A. 5)

Now we can specify N() precisely by

N =exp f"1 -fF(Q)d ?"2 (A.6)

The lower limit in the above integral could be chosen differently but this

merely multiplies N.(f) by a constant; the reciprocal of this constant would

then multiply N+(1).
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Evaluation of f1o(x)/2

Substituting in Eq. (4.4) for N.(), and using the usual inversion

formula we have tetting k - 0, a - 0 that

f = exp f , (B.)
to 0

where the path of integration must pass below the origin. Making the change

of variables s = , x' = f and noting that for x > 0 we can deform our path

of integration to an integration over S (see Fig. 2) leads to

1 fo(X) lo G(s) ds, (B,2)

where

F 1 1 1+ (+ S2
G(s) =exp 1 (ln 1 - (1 + s2) dsp,

~(B.3)

exp " In l+i /2 ds .

As indicated in Fig. 2, the contour S is broken up into the four parts

S1 , S 2, S3, Sy, plus the enclosures about the branch points at s = i and the

origin. It is not difficult to show, that as the radii of these enclosures are

allowed to approach zero, that there are no contributions due to the integrations

around the branch point s = i, and that the integration around the origin

contributes 2r. On the Si we have the following:
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S: s -e3i/2 y; for y > 1,(1 - y) - e - 7Ti/2 (y2 it

{ ) gep 1 (Y2 ) '

G(s) = -i y+ V exp f 27i f 2n (32 t n) -i dy
y

S.: s =e m31ri/2 2,

Lfn[l+(l Y2) ] "nY dyiarcsiny}

G(s)= exp -,In(1 Y

ri/2
S3: s=e y,y l

f tn l + (1 y )k] -in y
G(s) = exp I 1. [1 (1 1 dy+iarc siny

f(1 - __ y2)_ _2

S4: s = e / y , f o r y > 1, (1 y) =e~r/. (y2 )

G(s)= i-+(y2.),j exp 2 yi f ),/en .2 - 11))-+iidy

Y
In determining these expressions for G(s) it was found convenient on S, and S

to write the integral 0 to y as the sum of the integrals 0 to 1 and 1 to OD minus

the integral y to o. Combining all of these results we obtain finally

I f0)7+ fe Yx' H&(y) dy + f e -YX' [y+ y2 1) P ] (BA)

Here

H(y) =exp d(1-u2)' d y <l1

-exp - ti nncot +f d t=arcsiny

and
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P(y) = exp 1f (y2 ) " -

2vri Y(y 2 . )Z -v I),x + i d y ,>l

&= exp{L I. 7 Ar ~ *

sx -jins d , m = arc sin (1/y)

When y ranges from 0 to 1, t goes from 0 to 7/2; similarly 1< y <.o implies

7r/2m 0.



Appendix C

Computation of ( , y)

The x Fourier transform of a function 4O(x, y) which satisfies the

differential equation (A a /a x - 32) A¢ = 0 and the condition O(x, o) = 0 is

Y) y exp 'Y (y 2.+ k2)'vs - exp { "Yj (t 2 + i a + 82)41} (C.-1)

I Y A( ) (

where A(J) is an arbitrary function of . The condition that Y,/)y = 0 on y = 0,

x > 0 requires y ( , y = 0) be analytic in the UHP, and the condition 2 9/4y2  0 0 on

y = 0, x - 0 requires y , y 0) be analytic in the LHP. These conditions may be

written 
as

-~~~ kti2 +2+ia +/2) 4 'o)= +) . C+() , (C.2)
A(t)

yy(j~o) ( + k2 )  2 ( +ia +g2)y =.(k, C3

On A( )

where C+( ) and D.(r) are functions analytic in the UHP and LHP respectively.

The final condition on 0 may be expressed as X y(x, o) + O(x, o) be finite at the

origin. Since the behaviour of the transform at infinity determines the behaviour

of the function at the origin (see Sec. 4 and [ 5]), and since differentiation with

respect to x implies multiplication of the transform by i V we may express this

condition as

'I'2y(X, o) = 2 + aY {~~)~x ) (x, 0)}g(+)

as i-- co, where e >- 0. Using Eqs. (3.5), (3.10), and C.2) this becomes

e - i/4 ak (C.4)

as ,co. Hence C+(' )"j + 0 [ (1 +0 as o wo.



C2

We can determine the functions C+(g) and D.( ) by an application

of the Wiener-Hopf technique. First dividing (C.3) by (C.2) gives

2 - ( ag+92) +( 2+k2), (C.5)
=-M(T) Y

where M(?) is analytic in the strip - k Im(l) .,k. It is convenient to write

(C.5) as

D()/C+()= - Q() R() , (C.6)

where R() =2( 2  ia +A2) L and Q( ) = M( )/R(V). Now we can split

Q(Q) and R( r) into the product of factors analytic in the UHP and LHP, and as

a result we obtain

D-( ) = - C+(t) Q+(t) R+() = P(V) (C.7)

where P(Q) is an entire function. The factors R-( ), R+(Q), and Q.(t) are

given by
R=() =( -ia,)'

R+(t) = 2(t+ia2) , (C.8)

= exp {. I en9 dx for Im() <0.

Here a,= {(a'+4P')" -a}/2 and a2 = {(a'+ 4 32 +a}/2. To determine

P('K) we must first anticipate that Q.( ) = 0(1) as o D w, and hence since

Q(V)-- 1 as g -co the same is true of Q+('g). Also since D.( ) is

proportional to the transform of the skin friction we expect D.(V),, 0 (1)

as t-.- co. Using these order conditions plus Eqs. (C.8) and the information

about C+( ) we see that P(J) must be a constant, say P'. Then

c+ M 1 P.p9Q+(V) R+(f) ' D.( ) = P Q.(9) R() (0,9)
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To determine P' we substitute the above expression for C+(J) in Eq. (C.4).
- +

Noting that R+(J) - 21 and Q( I) 1 plus terms of higher order for

large " it is clear that P' = ax e "37ri/ 4 . Consequently

-y( , o) : e "3 i/ 4 al Q.(Q ) R.( ) . (C.10)

As was pointed out earlier we anticipate that Q.( ) is 0(1) as ;
and since Q.(t) is determined only up to a constant multiplier we may
take the leading term to be one. Actually the expression for Q.( ) as
given in (C.8) does lead to the desired expression when V is large.
This will be seen in Appendix E.



Appendix D

Evaluation of I(rj

The functions N -(I) and M.( ) are defined by

andexp { In[(z2+ i a2z + (z2+k ) I dz}

M.) = exp Lf -n[(z' +ia z - +

If we restrict so that Im()-c 0, then

e.( xp k n (x' + iax + +(x +k 2) - x

(D.1)
In the limit as * O, our integration path must be indented to go above the

origin; i.e. the path of integration is from - co to - E, then a semi-circle of

radius f in the UHP, and then the real axis from E to co. In the limit as

- 0 the integration over the semi-circle is zero. Letting r = ax/ jp 2 ,

r 2 = 12/a2 = Wy/(c U0 ) 2 , N..(o)/M.(o) = exp I(ar), and noting that as k -- 0,

(x2 +kZ) = IxJ we obtain from (D.1)

1 In [i(l+r) + _2 r ]-t + or dr (D.2)
I() f n[i(1 - r) + -r 2 ] + rr r

This integral can be evaluated by first computing dI/dia and then integrating

with respect to a". We have

d - 2 1 dr
d- ir- i( D

I I n + (D.3)
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where = eTi/4/2. Consequently

I 2 r+ dr (D.4)

The constant of integration (i.e. the upper limit in the above integral) is

determined by noting that when a = 0, N.(o) = M.(o) hence 1(,r) = 0, but a - 0

corresponds to e = o.

For d' I 1/2, I(a') can be evaluated directly by expanding the integrand

in a power series in '/r' and then integrating termwise. We obtain

(2n + 1)2 ' >, 1/2 (D.5)

For 6-c 1/2 the evaluation of (D.4) is slightly more difficult. It is convenient

to write (D.4) as an integral from r to oo plus an integral e" to Y, then we

obtain

I I ( 0) 1-r+r dr .(D.6)

After writing the integral in (D.6) as one from 0 to minus an integral from

0 to e' we obtain
0"

Z -8n(2') - -Lfi n '- r dr

0

-ii 1 n (2d) + Z ("/f) 2n+ 1
8 2I (2n+ 1)2 '...1/2

(D.7)
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Asymptotic Expansion of Qo(Q)

The function Q.( ) as defined by (C.8) is

Q() -exp In f . x dx for Im(t) < 0, (E.1)

where

() +ia + p2) +(q +k2)

2(t2 +ia t +

Except for branch points at = ik and = ia 1 , Q( t) has no other singularities

in the UHP. Hence using Cauchy' s Integral Theorem the integral in (E.1) can be

converted to an integral over T (see Fig. 6). So if we write Qo(t) =exp {- G( )/2ri!

we have

G(g)= fnQ(z) dz .(E.2)

For large +, G(t) has asymptotic representation of the form

where

Go = lim G() , G= - lim t2 dG (E.4)00 --*so d 9

Itis not difficult to show from (E.2) that Go is zero. Performing the limiting

operation indicated in (E.4) we see that

G=- ftn Q(z) dz (E.5)

7.
It is convenient to write Q(z) as

Q(z) = .l+V(z)} 
; V(z) = (z+ik)lt (z-ik)4k

2 L(z - ia,)' (z+ ia)9
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To evaluate (E.5) in the limit as k--P0, we make the change of variables

x = z/ia,, and let S" = a,/a 2 . Then our branch cut lies on the real axis

from 0 to 1, and our path of integration is clockwise. The function V(z) has

the values

V(x)x e= - i/ 2 V(x) - x e i/ 2
V ax = 1-x) (x + 1/s')"' ,(I -x) i(x + I,/ '

on the upper and lower sides of the branch cut. We obtain
I

GI  -ia, fn 1+i'cx) dx; q(x) x (E6)
0 i iq(x)

The integral in Eq. (E.6) can be evaluated by integration by parts and some

straightforward algebraic manipulation. We obtain

G 1 = "ia " i+l+ " 2i ) n i

So for large

Qhee G I +0ee b

where G, is defined above.
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